

форсайт.

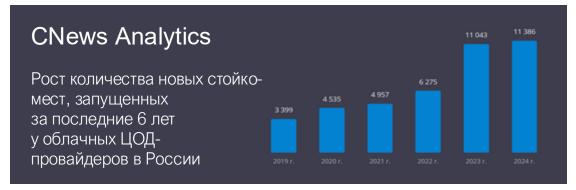
Архитектура композитного хранилища данных / Что мы под этим понимаем и что хотим получить

Спикер

Юлия кудрявцева

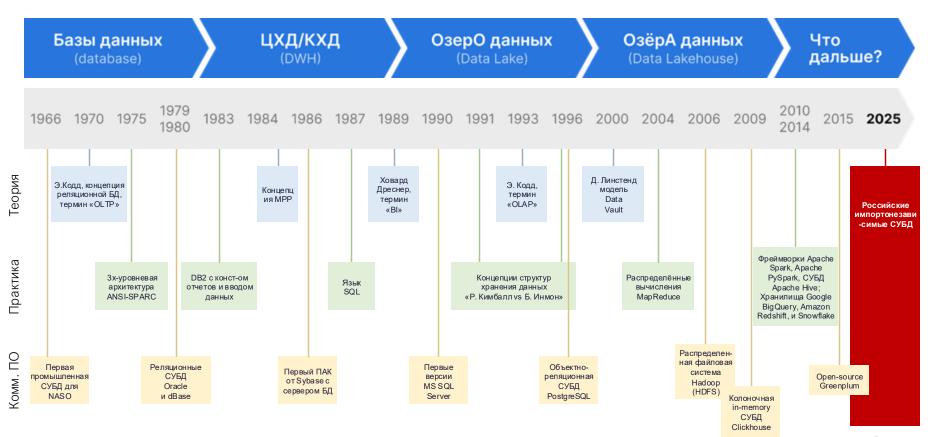
Должность

Директор по стратегическому развитию


Компания

ООО «ФОРСАЙТ»

Наши данные постоянно растут

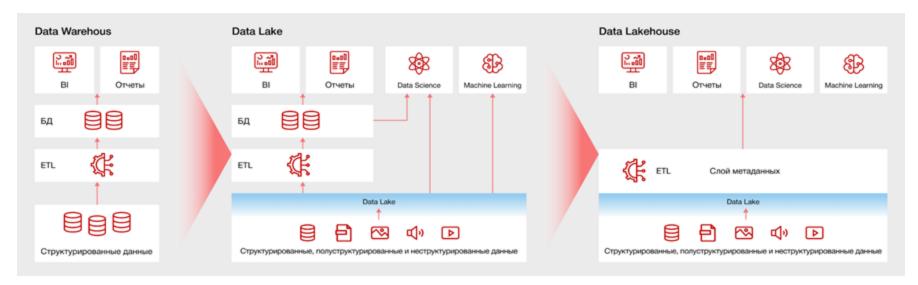


5 4 2 6 Statista.com 523 529 Страны 449 с наибольшим 322 количеством ЦОД по 143 121 состоянию на март 2025 года USA Germany Australia Netherlands Russia Switzerland France Italy Mexico Poland Japan Brazil

Эволюция технологий хранения данных

От Data Warehouse к Data Lake, а в чем отличие?

	Data Warehouse	Data Lake
Типы данных	Структурированные, подготовленные к аналитике данные	Данные в необработанном, полуструктурированном или неструктурированном виде и в любых форматах
Актуальность данных	Только необходимые под конкретные бизнес-задачи данные	Все данные компании, часть из которых может не пригодиться никогда
Цели	Визуализация, отчетность, ВІ	Предиктивная аналитика, машинное обучение, ИИ, ВІ, аналитика больших данных
Обработка	ETL - данные извлекаются из источника, очищаются, структурируются, на финальном этапе готовы к анализу	ELT - данные извлекаются из источника, хранятся в озере данных и затем трансформируются при необходимости



Data Lakehouse: объединим плюсы Data Lake и DWH

форсайт.

Lakehouse совмещает гибкость озер с четкой структурой классических хранилищ. Поверх Data Lake развертывают Apache CarbonData, Apache Iceberg, Open Delta, Apache Hudi и другие, которые обеспечивают дополнительный слой для управления метаданными и реализации транзакций.

Такая концепция позволяет **использовать только один репозиторий**, **где не только располагаются все типы данных**: структурированные, полуструктурированные и неструктурированные — **но и выполняются все запросы и отчеты**.

Они ушли

форсайт.

Западные вендоры

- ORACLE
- SAP
- IBM

Российские СУБД

- PostgrePRO
- Tantor
- Arenadata
- Jatoba
- Pangolin
- Selena
- Trino
- VK DataPlatform
- и другие...

Завершается эпоха построения платформ данных и хранилищ данных на западных моновендорных технологиях. Требуется миграция

Переход на построение решений на основе OpenSource СУБД и других инструментов с разными по сути архитектурами и характеристиками. Формирование гетерогенных сред с противоречивыми требованиями и высокими затратами управления, поддержки и развития

Сильно повышаются требования к взаимодействию между платформами данных и аналитическими инструментами. Производительность проседает, так как каждая отдельная OpenSource СУБД несет в себе специфику оптимального выполнения запросов. Автоматическое исправление интеллектуальными оптимизаторами западных платформ некорректной работы аналитических инструментов больше не работает

Ho оставили нам OPEN Source...

Заказчик вынужден использовать несколько типов СУБД. Противоречивость требований к слоям

СУБД	Преимущества	Недостатки	Выбор для слоя КХД
PostgreSQL	Структурированные, подготовленные к транзакционной обработке – возможны и расчеты и аналитика данные	Данные в необработанном, полуструктурированном или неструктурированном виде и в любых форматах Сложность обработки больших объемов	Сырые данныеОперативные данныеМетаданные
GREENPLUM DATABASE	Массивная параллельная обработка данных (MPP) – работа на больших объемах	Все данные компании, часть из которых может не пригодиться никогда Сложности с изменением и вставкой данных на больших объемах	Оперативные данныеДетальные данные
ClickHouse	Очень быстрые витрины для визуализации, отчетность, ВІ	Медленное сохранение расчетных данных	Аналитические данные (витрины данных)
S 3	В основном Архивные данные, для работы данные извлекаются из источника, очищаются, структурируются, на финальном этапе готовы к анализу	ELT - данные извлекаются из источника, хранятся в озере данных и затем трансформируются при необходимости	Архивные данныеДетальные данныеАналитические данные (витрины данных

Мы слышим, что Компаниям необходимы:

форсайт.

Многоуровневая, масштабируемая, высокопроизводительная аналитическая платформа данных, в которой можно хранить и обрабатывать данные из разных СУБД как в единой базе данных

Бесшовная интеграция аналитической платформой с платформой данных как с единым источником данных, с использованием лучших практик аналитической платформы для обработки данных в оперативной памяти, унифицированного обращения к распределенным данным на основе их мультитемпературной обработки и с учетом специфики физического распределения данных для обеспечения высокой производительности запросов

Единые унифицированные интерфейсы для управления, мониторинга и согласованного резервного копирования и восстановления

Единое окно технической поддержки от компании поставщика платформы

Наши тестовые эксперименты: метрики сравнения

Общая работоспособность ВІ инструментов ФАП

- 1. Скорость чтения на больших объемах данных (млрд-ы записей, ТБ информации)
- 2.1. Поддержка из коробки ФАП (отчеты, ETL, кубы, таблицы, запросы и т.п.)
- 2.2. Работает Self-Service (без использования встроенного ClickHouse)

ILM-политики

- 3. Возможность сформировать единую партиционированную строчноколоночную таблицу для одновременной обработки горячих и холодных данных
- 4. Одновременное (совместное) чтение агрегата из разных сегментов (горячие/холодные/теплые)
- 5. Запись данных в единую мультитемпературную таблицу
- 6. Управление партициями слоев (разделение общей таблицы на сегменты разной «температуры»)
- 7. Автоматическое расширение партиций разной "температуры"

Запись/вставка данных (в контексте единой совмещенной row/columnar таблицы)

- 8. Write-back из форм ввода ФАП
- 9. Вставка из ФАП пакета данных через ETL
- 10. Скорость вставки большого массива данных и конвертация в колоночное хранение (внешними средствами, не через ФАП)

Управление таблицами в колоночном формате

- 11. Сложность механизма создание таблиц с колоночным форматом
- 12. Перенос реf-файлами между ландшафтами (DEV/TEST/PROD)
- 13. Коэффициент сжатие данных при колоночном хранении

Права доступа

14. Поддержка RLS и CLS

Репозиторий метаданных Форсайта

15. Необходимость устанавливать дополнительную СУБД для репозитория ФАП

МРР-сервер и отказоустойчивость

- 16. Сложность архитектуры взаимосвязанных серверов
- 17. Экономия (оптимизация) места на HDD для больших архивных массивов данных в случаи нескольких реплик БД

Наши тестовые эксперименты: состав тест-кейсов

Форсайт@Example.RHC (Relation Hyper Cube)

Сверх большая аналитическая ROALP витрина (звезда) для абстрактной предметной области Метрики: 2-3 ТБ данных, 200-300 аналитик измерений, 50-100 фактов, режим Self-Service

Форсайт@Example.RMS (Retail Management Solution)

Чековая аналитика продуктового магазина за несколько лет

Метрики: 1,5-2 млрд чеков за 5 лет, 5-10 тыс магазинов, продуктовый каталог в \sim 15 тыс товаров, модель «снежинка» (join), табулярная и кубовая модели данных

Форсайт@Example.SVD (Service Desc)

OLTP нагрузка на примере лога обращений в техническую поддержку компании

Метрики: тестирование OLTP/OLAP/HTAP режимов, 50 млн полуструктурированных записей, пагинация в отчетности

Форсайт@Example.PPM (Project Portfolio Management)

Формирование сводной отчетности на примере анализа инвест. проектов компании

Метрики: 10 тыс инвест проектов, 10 лет динамики, 100 версий для фин. планов и КРІ, сводные таблицы в 5+ млн ячеек

Сергей Золотарев Arenadata

Основатель и директор по стратегическому развитию

Классические аналитические хранилища

- Oтдельные классы систем
 Data Warehouse. Data Lake, Lakehouse...
- Mногослойное хранение Stage, ODS, DDS, Data Marts, Bl..

Data Driven подход

Дублирование

данных по слоям

Принятие взвешенных решений на основе достоверных данных

Т - 1 сутки Сложность в лучшем случае масштабирования

> Сложность ETL и сопровождения

T-1 Time 2 Data Time 2 Insignt 90%+ Большинство клиентов Next Generation платформы данных

_ Композитный стек

Batch, Stream, Realtime, аналитический HTAP

Zero Copy архитектура

 Многокомпонентные платформы данных с единым слоем хранения, гибкой ролевой моделью и контролем доступа

Al-driven подход

Овместное и самостоятельное принятие и исполнение решений ИИ-агентами

Time 2 Insight

Al Native

NRT Динамическое масштабирование

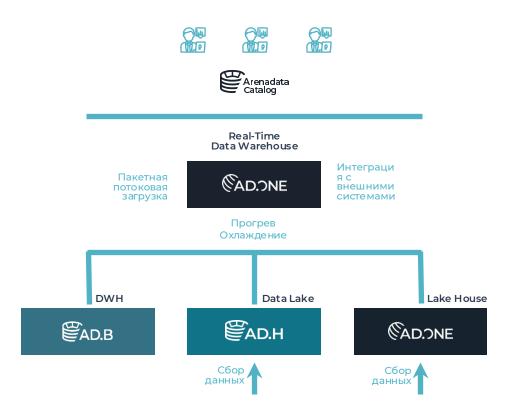
Zero Copy Zero ETL

До 1 часа Time 2 Data Time 2 Insignt

Бизнес из Заказчика становится непосредственным участником

Дата-контракт - модель взаимодействия поставщиков и потребителей на основе баланса стоимости и ценности данных

- Откуда эти данные? Можно ли им доверять? Какого качества эти данные?
- Что даст бизнесу этот дата-продукт?
- Как быстро я могу получать эти данные? Сколько бизнесу это будет стоить?



Переход от улучшения процессов к созданию автономных систем

MLOps/GenAl **AgentOps** Модели, выполняющие только Автономные агенты с динамическим Подход поведением в реальном времени узконаправленные задачи Realtime плюс глубина истории Мониторинг работы модели, анализ Отслеживание цепочек рассуждений Управление результатов и реестр моделей и непрерывное самообучение **Data Governance** by Design Статичные модели с предсказуемым Автономное выполнение комплексных Расширенный Воздействие поведением и batch-обработкой бизнес-процессов с ROI 30-60% мониторинг и контроль доступа Дрифт данных, скоров и проблемы Непредсказуемое автономное поведение Риски интеграции и этические риски Arenadata: **DBA**, Steward Оптимизация существующих процессов, Создание новых бизнес-моделей Выгоды 70-85% проектов не доходят до с конкурентным преимуществом продакшена

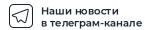
Обеспечение преемственности при переходе к целевому состоянию

Совместимость

Технологическая интеграция между компонентами платформы, с единым каталогом данных и интерфейсами

Методология

Плавный переход к целевому состоянию с минимальными рисками на основе согласованной дата-стратегии


Тех Поддержка

Единая техническая поддержка от одного вендора

Оставайтесь на связи

Реальная основа для суверенитета в ИТ

Спикер

Алексей Кулаков

Должность

Директор департамента развития продуктов

Компания

«Тантор Лабс»

Компания «Тантор Лабс»

с 2016 г. – на международном рынке

с 2021 г. – в России

с 2022 г. – в «Группе Астра»

Активные участники международного сообщества PostgreSQL

В основе СУБД Tantor – **PostgreSQL** с востребованными функциональными расширениями и оптимизацией ядра

Основа для суверенитета в ИТ

СУБД Tantor Postgres

Высокопроизводительная БД на основе PostgreSQL

- Для высоконагруженных корпоративных систем
- Редакции: Basic, Special Edition, Special Edition 1C, Certified
- Агрегация временных рядов (Tantor PipelineDB)
- Колоночное хранение данных
- Механизм анонимизации

Платформа Tantor

Эффективное управление и администрирование любых БД на базе PostgreSQL

- Конфигурирование
- Обслуживание
- Мониторинг
- Рекомендации по настройке БД

Tantor XData

Современная вы сокопроизводительная машина баз данных

- Отказоустойчивость и надежность
- Производительность
- Масштабируемость
- Снижение затрат на инфраструктуру и администрирование

Tantor DI

Централизованное управление корпоративными данными

- Потоковая онлайн-репликация данных (CDC)
- Пакетная загрузка и трансформация данных
- Основа для корпоративного хранилища данных (КХД)

Стратеги я

PostgreSQL:

- На основе реальных потребностей
- Адаптированный к неистовым нагрузкам
- Оптимальный по стоимости владения

Tantor Postgres DCS

Новая архитектура (Disaggregated Compute & Storage)

Tantor XData

Существенное повышение производительности и масштабируемости за счет DCS и использования RDMA, возможность работы как HTAP

Платформа Tantor

Единый центр управления продуктами Tantor

Tantor DI

Средство миграции данных из любого источника в СУБД Tantor Postgres или МБД Tantor XData

Почему нас выбирают?

- 1. Мы не делаем Oracle из Postgres, мы делаем Postgres лучше Oracle
- 2. Больше функциональности за меньшую стоимость владения
- 3. Упрощаем ландшафт (прощай, ClickHouse, GreenPlum, Cassandra...)
- 4. Мы повышаем экспертизу
- 5. Мы оказываем лучший сервис на рынке

Алексей Кулаков

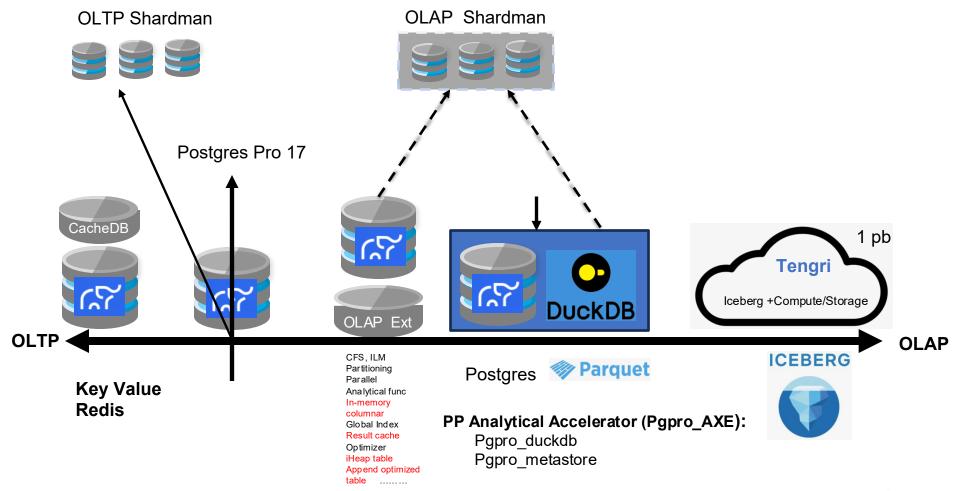
Директор по развитию продуктов «Тантор Лабс»

ak@tantorlabs.ru

Стратегия компании Postgres Pro по реализации аналитических и универсальных СУБД (OLTP/OLAP/HTAP)

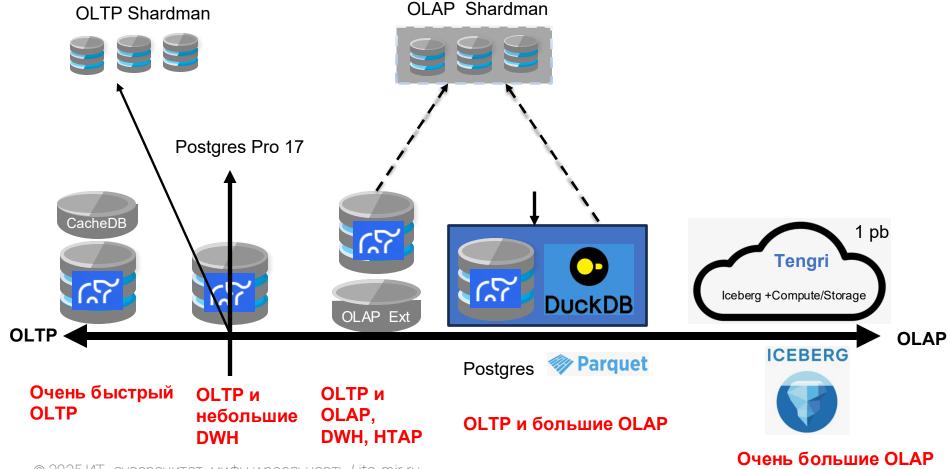
Спикер Должность Компания

Ривкин Марк Нахимович Presales manager Postgres Professional


OLTP, OLAP, HTAP

	OLTP (транзакционные)	OLAP (аналитические)
Цель	Оперативная обработка	Анализ исторических данных
Тип запросов	Короткие, простые (CRUD)	Сложные, агрегирующие
Данные	Актуальные	Исторические (годы)
Пример	Банковская транзакция	Отчет по продажам за 5 лет

В реальной жизни часто видим смесь нагрузок - HTAP


Можно иметь 2 разные СУБД (для OLTP и аналитики, но это дорого и аналитика отстает от OLTP Можно сделать универсальную/конвергентную СУБД и работать на свежих данных

Позиционирование

© 2025 ИТ- суверенитет: мифы и реальность / its-mir.ru

Результаты тестов

- Для ClickHouse, AXE, Postgres Pro компьютер с 8 vCPU, 16 гб RAM
- Для CITUS и NN гораздо больше
- 50 миллионов записей
- Select * from read_parquet('/data/...../file_pf_50_1*') r where r['name'] =;
- Время в секундах

Параметры	AXE	ClickHouse	Citus	Postgres Pro
Время операции 1	0,7	0,37	8,77	30,01
Время операции 2	0,68	0,64	9,29	42,31

Select r['file_name'], r['row_group_size'], r['statistics']
From duckdb_query('FROM parquet_metadata("/data/.....file1.parquet")') r;

Postgres Pro без и с АХЕ

64 ядра, 64 Гб RAM, 6 млн строк

Запрос N	PG tables	AXE	Ускорение в
1	7.4186s	0.128s	57
2	4.0139s	0.175s	22
3	1.6309s	0.0373s	43
4	1.9727s	0.0423s	46
5	1.5942s	0.0359s	44
6	1.9371s	0.0346s	55
7	3.4457s	0.0713s	48
8	5.2353s	0.167s	31
9	1.6342s	0.0567s	28
10	2.0166s	0.0426s	47
11	1.6746s	0.0408s	41

Марк Ривкин, Postgres Professional

Presales manager

89853645254